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A B S T R A C T

Available and accessible three-dimensional (3D) urban morphology data have become essential for extensive
academic research on built-up environments and urban climates. A rapid and consistent methodology for ex-
tracting urban morphology information is urgently needed for sustainable urban development in global cities,
particularly given future trends of rapid urbanization. However, there is still a lack of generally applicable
methods that use open-source data in this context. In this study, we developed a simple and highly efficient
method for acquiring 3D urban morphology information using open-source data. Building footprints were ac-
quired from the Maps Static application programming interface. Building heights were extracted from an open
digital surface model, i.e., the ALOS World 3D model with a resolution of 30m (AW3D30). Thereafter, urban
morphological parameters, including the sky view factor, building coverage ratio, building volume density, and
frontal area density, were calculated based on the retrieved building footprints and building heights. The pro-
posed method was applied to extract the 3D urban morphology of Hong Kong, a city with a complex urban
environment and a highly mixed geographical context. The results show a usable accuracy and wide applic-
ability for the newly proposed method.

1. Introduction

Unprecedented growth in the global population has been observed
in recent decades, and 55 % of the world’s population is now estimated
to live in urban areas (UN DESA, 2018). The United Nations also pre-
dicts that the global population growth between 2012 and 2050 will
occur mainly in cities, with close to 90 % of this increase taking place in
urban areas in developing countries (UN DESA, 2015, 2018). The
continual construction associated with urban sprawl has resulted in
profound urban form changes, especially in less-developed countries
and regions. Urban morphology includes the urban form of individual
buildings, open spaces, streets, and their positions in relation to each
other. Changes in urban morphology could lead to many social, eco-
nomic and environmental problems, such as increasing concentrations
of the population, traffic jams, housing shortages, resource shortages,
biodiversity reductions, “heat island” effects, noise, and air and water
pollution (Cionco & Ellefsen, 1998; Johansson, 2006; Lau, Chung, &
Ren, 2019; Ng, Yuan, Chen, Ren, & Fung, 2011; Nichol, 1996; Wang
et al., 2019; Wong et al., 2011; Yu, Liu, Wu, & Lin, 2009). A sustainable
urban environment can help mitigate or eliminate these problems, and

urban morphology information can provide fundamental data for sus-
tainable urban development in urban planning, construction, trans-
portation, energy and property management, environmental exposure,
and so on (Suveg & Vosselman, 2004; Shearer et al., 2006; Diamantini &
Zanon, 2000). Therefore, a rapid and consistent methodology for ac-
quiring urban morphological data is paramount for developing sus-
tainable environments for cities, especially those subject to rapid ur-
banization that also suffer from a lack of urban data.

However, generally applicable methods for using open-source data
in cities worldwide are still deficient. Field surveys have been used to
collect 3D urban morphology for years. However, although field sur-
veys can be conducted to measure the footprints and heights of build-
ings, they are often labor intensive and time consuming, and only
limited urban areas can be covered by conventional ground surveys.
Field measurements are also prone to sampling errors, especially when
volunteer-based personnel or those who are not experts are involved in
the data collection (Nowak, Hirabayashi, Bodine, & Greenfield, 2014).

Satellite image-based methods for the extraction of urban mor-
phology have been addressed by many researchers. Compared with
conventional manual methods, satellite-based technologies are fast and
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economical at obtaining urban morphological information over large
areas. Various remotely sensed data have been used to derive urban
information, including optical images (Hao, Zhang, & Cao, 2016;
Paparoditis, Cord, Jordan, & Cocquerez, 1998; Shufelt, 1999; Turker &
Koc-San, 2015) and synthetic aperture radar (SAR) (Gamba,
Houshmand, & Saccani, 2000; He, Jäger, Reigber, & Hellwich, 2008;
Simonetto, Oriot, Garello, & Le Caillec, 2003), Light Detection and
Ranging (LiDAR) (Rottensteiner & Briese, 2002; Shan & Sampath, 2017;
Verma, Kumar, & Hsu, 2006; Zhou & Neumann, 2008), and interfero-
metric SAR (InSAR) data (Burkhart et al., 1996; Gamba et al., 2000;
Luckman & Grey, 2003; Thiele, Cadario, Schulz, Thonnessen, & Soergel,
2007; Dubois, Thiele, & Hinz, 2016). In addition, some research studies
have extracted building information by integrating different sources of
satellite images to fully exploit the advantages of different data. For
example, Xu et al. (2017a) extracted building information from a high-
density urban area using both high-resolution stereo and SAR data.
Wegner, Ziehn, and Soergel (2010) used both optical imagery and
InSAR data to detect 3D building information. Gamba and Houshmand
(2002) used SAR and LiDAR data with optical imagery to detect land
cover types, a DTM and the 3D shapes of buildings. Moreover, an in-
creasing number of methods for the detection of building information
are based on high-resolution digital surface models (DSMs) generated
from satellite images (Davydova, Cui, & Reinartz, 2016; Lafarge,
Descombes, Zerubia, & Pierrot-Deseilligny, 2010; Merciol & Lefèvre,
2015). However, the accuracy and the universality of the applicability
of satellite image-based methods have been limited by the cost or ac-
cessibility of high-spatial-resolution remotely sensed data (Weidner &
Förstner, 1995). Moreover, the interpretation of satellite (e.g., SAR and
LiDAR) images is also complicated.

Nevertheless, recent developments in location-based services and
digital map services have facilitated various applications for the ex-
traction of urban morphological information. Several open map ser-
vices, including OpenStreetMap (OSM), ArcGIS Online, Google Maps,
Yahoo! Maps, and TIGER/Line Map, have been applied to extract urban
information (Chiang, Knoblock, Shahabi, & Chen, 2009; Malarvizhi,
Kumar, & Porchelvan, 2016; Huber & Rust, 2016; Kaiser et al., 2017).
While OSM has been applied for some urban studies (Audebert, Le Saux,
& Lefèvre, 2017; Lopes, Fonte, See, & Bechtel, 2017), the function and
architectural details of the buildings extracted through OSM still need
to be improved (Fan, Zipf, Fu, & Neis, 2014; Hecht, Kunze, & Hahmann,
2013). Google has developed a series of application programming in-
terfaces (APIs) that allow users to extract useful urban information from
Google Maps. For example, many researchers have extracted urban
canopy geometries from street-view panoramas using the Google Street
View (GSV) API. Openness and greenery along a street can be mapped
by calculating the sky view factor (SVF) and green view index using
GSV panoramas (Carrasco-Hernandez, Smedley, & Webb, 2015; Gong
et al., 2018; Li, Ratti, & Seiferling, 2017; Yin & Wang, 2016; Zeng, Lu,
Li, & Li, 2018). Although GSV images are free and their developed re-
sults show high accuracy, they have a well-known limitation in their
spatial coverage and accessibility. Moreover, GSV images are available

and applicable only for mapping the streetscapes of urban canyons in
cities throughout the world and along major routes where the Google
car can travel. For other cities or other urban areas where the Google
car is not allowed, it is impossible to obtain any comprehensive mor-
phological information from GSV images.

The new trend in the extraction of 3D urban morphology consists of
the combination of satellite images with open map services (Haala &
Anders, 1996; Over, Schilling, Neubauer, & Zipf, 2010; Suveg &
Vosselman, 2004). By combining satellite images with open map ser-
vices, the specific advantages of both satellite images (i.e., a high ac-
curacy and a large information content) and maps (i.e., a relatively
simple interpretation and open access availability) can be exploited.
Therefore, the aims of this study are (1) to develop a method for the
acquisition of 3D urban morphology information by integrating Google
Maps with a freely available DSM that can be easily applied to cities
worldwide; (2) to generate 3D urban morphologies and calculate urban
morphological parameters in Hong Kong, a city with a complex urban
form; (3) to validate the urban morphology information pertaining to
various urban landscapes; and (4) to further discuss the limitations and
advantages of this method, as well as its applications. The proposed
method will contribute to the scholarly understanding and extraction of
urban morphology in a highly efficient way using a simple workflow.
This approach can be applied to cities worldwide, especially those that
lack urban data. In practice, the results provide not only access to a
freely open urban dataset for researchers, town planners and architects
but also new insights into applications such as urban studies and urban
planning related to or based on urban morphology.

2. Materials and methods

2.1. Study area and sample sites

In this study, Hong Kong — a large city with a complex urban
morphology and a unique geographical context — is selected as the
testbed. Hong Kong is one of the world’s most compact cities, with a
population of over 7.3 million in a land area of 1,100 km2. This ex-
tremely high population density shapes the unique urban form of Hong
Kong’s metro area. The high-density areas of Hong Kong are almost
entirely composed of densely packed high-rise buildings with podiums
and deep street canyons (Li et al., 2012). As a consequence of this high
density, Hong Kong is facing undesirable externalities such as thermal
comfort issues, overcrowding, urban heat island effects, poor air ven-
tilation, and high air pollution concentrations in deep street canyons.
To improve the urban climate and environment, the strategic study
entitled “Hong Kong 2030+: Towards a Planning Vision and Strategy
Transcending 2030” (Planning Department of Hong Kong, 2016) has
defined the future key strategic planning direction as “Planning for a
Livable High-density City”, which includes the sensitive disposition of
urban blocks, building setbacks, and the creation of a breezeway/urban
wind corridor, among other components.

For this study, a total of 12 rectangular areas (2 km×2 km) with

Nomenclature

3D 3-Dimensional
LiDAR Light Detection and Ranging
SAR Synthetic Aperture Radar
InSAR Interferometric Synthetic Aperture Radar
DSM Digital Surface Model
OSM OpenStreetMap
API Application Programming Interface
GSV Google Street View
DEM Digital Elevation Model
BCR Building Coverage Ratio

BVD Building Volume Density
FAD Frontal Area Density
SRTM Shuttle Radar Topography Mission
ASTER GDEM The Advanced Spaceborne Thermal Emission and

Reflection Radiometer Global Digital Elevation Model
ALOS Advanced Land Observing Satellite
AW3D30 Advanced Land Observing Satellite World 3D – 30m
BH Building height
nDSM Normalized DSM
WRF Weather Research and Forecasting
RMSE Root Mean Square Error
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varied urban landscapes have been sampled for the extraction of 3D
urban morphology information to provide a fair representation of Hong
Kong’s urban form, as shown in Fig. 1. Six sample sites are located in
metropolitan areas (sites 5, 6, 7, 10, 11, and 12); four sites are located
in the new town areas (sites 1, 4, 8, and 9); and two sites are chosen
from industrial and rural areas (sites 2 and 3). The metropolitan sample
areas are highly urbanized and contain a number of extremely tall
skyscrapers over 200m; the dominant building type is very tall and
sharp-edged buildings (Renganathan, 2005). The sample sites located in
the new town areas have more open spaces and street canyons with a
relatively low height-width ratio. According to a local climate zone
mapping of Hong Kong conducted by Wang, Ren, Xu, Lau, and Shi
(2018), the main type of built-up structure in the Kowloon district
(metropolitan area) is the compact high-rise, and the main type of built-
up structure in the Yuen Long district (new town area) is sparse con-
struction. The podium-tower structure is the most generic planning
model and can be commonly found throughout Hong Kong (Ng et al.,
2005).

2.2. Data source

2.2.1. Maps static API
Google Maps is an Internet open map service application and

technology provided by Google that contains an urban morphology
database for global cities. Google encourages the diverse usage of its
products according to the Google Permissions of Using Google Maps,
Google Earth and Street View (Google, 2015). Google launched the
Google Maps API in June 2005 to allow developers to integrate Google
Maps into their websites. The Maps Static API provided by Google Maps
creates maps based on URL parameters sent through a standard HTTP
request and returns the maps as an image (Google, 2018). The basic
parameters that define a map include the “center coordinates”, a
“zoom” level and the “size” of the map image (in pixels). Optionally, by

using the Maps Static API, users can employ the “style” parameter,
which defines a custom style to alter the presentation of specific fea-
tures (roads, parks, built-up areas, and building footprints) within the
map; this parameter takes “feature” and “element” arguments, identi-
fying the abovementioned features based on a user-defined style and a
set of style operations to apply the selected features, making the map a
styled map. Therefore, building footprint information can be retrieved
from styled maps using the Maps Static API.

2.2.2. Digital surface model data
There are two main categories of globally available digital elevation

models (DEMs): commercial DEMs and freely available DEMs. The
Shuttle Radar Topography Mission (SRTM), the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global DEM (ASTER
GDEM), and the Advanced Land Observing Satellite (ALOS) World 3D –
30m (AW3D30) DSM are the three global-scale DEM datasets that are
currently available to the general public free of charge. All of these
DEM datasets provide a moderate resolution of approx. 30m (1 arcsec)
and capture almost the entire Earth’s surface. According to previous
studies (Grohmann, 2018; Santillan & Makinano-Santillan, 2016), the
AW3D30 DSM was found to be the most accurate DEM dataset with the
lowest mean error and root mean square error (RMSE) compared to
other freely available DEMs. Additionally, AW3D30 is the newest global
DEM dataset currently available; it was created based on the original
images from 2006 to 2011 acquired by the 5-meter mesh ALOS dataset,
which is considered to be the most precise global elevation dataset at
present (Tadono et al., 2014). Therefore, in this study, the AW3D30
dataset was selected for extracting building height information. The
AW3D30 dataset, which was released in 2015 by the Japan Aerospace
Exploration Agency, can be publicly obtained from http://www.eorc.
jaxa.jp/ALOS/en/aw3d30/. The AW3D30 tiles were downloaded and
saved in GeoTIFF format for further calculations using ArcMap 10.6
software.

Fig. 1. The locations of the 12 sample sites (2 km×2 km) in Hong Kong.
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2.3. 3D urban morphology extraction

The process of extracting urban morphology information includes
two major steps: 1) building footprint extraction and 2) building height
extraction (Fig. 2). The building footprint extraction process was based
on the styled maps obtained from the Maps Static API, while the
building heights were generated from the AW3D30 DSM. After ex-
tracting the building heights and building footprints, the estimated
urban morphology within the study area was acquired. Thereafter,
urban morphological parameters, including the SVF, building coverage
ratio (BCR), building volume density (BVD), and frontal area density
(FAD), were calculated based on the retrieved building footprints and
building heights.

2.3.1. Building footprint extraction
The presentation of standard Google Maps can be customized by

applying customized styles using the Maps Static API. Therefore, styled
maps can display features such as roads, parks, built-up areas, and other
points of interest. The particular styles can be highlighted by defining
the color or style by complementing the surrounding content on the
page or even hiding features completely using the API. A Maps Static
API URL must be of the following form: https://maps.googleapis.com/
maps/api/staticmap?parameters.

The parameters in the URL include location, map, feature and ele-
ment parameters. The location parameters determine the center co-
ordinates of the map and the zoom level. The map parameters define
the characters of the map, such as its size and format. The feature and
element parameters determine the style of the map. The feature para-
meters indicate the presence of elements on the map, such as roads,
parks, or other points of interest; for example, the syntax “feature:road”
specifies the selection of roads on the map. Elements, such geometries
and labels, are characteristics of features.

To display the building footprint information, styled maps within
the study area were created using the Maps Static API. The location of
each map was defined in the study area, and the zoom level was set to
17 to display the building footprints by setting the location parameters.
The images were formatted as png32, which provides a lossless com-
pression of the map. The features of the building footprints were se-
lected by defining the feature parameters, and the buildings were given
black outlines using the element parameters. Other features, such as
roads and water, were turned off, and the background was set to white
to emphasize the building footprints in each map. An example of a URL
employed to retrieve a styled map has been included in the supple-
mentary materials. The building footprints retrieved by the URLs are
displayed in Fig. 3.

The maps were saved to local hard drives. The imagery was digi-
tized in ArcScan using ArcGIS to convert the building footprints into a
vector format. ArcScan provides tools to convert raster images into
vector-based feature layers in a rapid and automatic way. After digiti-
zation, a spatial adjustment was performed to assign the coordinate
system to the Hong Kong 1980 grid system for the retrieved vector
based on actual GIS data from the planning department of Hong Kong.
The details of the extracted building footprints within the study area are
displayed in Figs. 4 and S1 (in the Supplementary materials).

2.3.2. Building height extraction
The building height (BH) is an important urban morphological

parameter that is widely used in weather forecasting models and urban
canopy models. In this study, AW3D30 DSM images were used to ex-
tract building height information. The whole processing workflow for
extracting the building height consists of two stages. The first stage is
the generation of an nDSM. A DSM is a representation of the Earth’s
surface that contains all objects higher than the ground, e.g., trees and
buildings. To extract buildings, an approximation of the bare earth (a
continuous ground terrain, known as a digital elevation model, DEM)
was determined first to separate the nonground objects from the

ground. The difference between the original DSM and the approximated
DEM is named the normalized DSM (nDSM), which contains the height
information of all nonground objects (Eq. (1)).

= −nDSM DSM DEM (1)

For this study, the block minimum filtering method (Wack &
Wimmer, 2002) was adopted to generate the DEM by taking the
minimum elevation within a certain area. Considering the resolution of
the raw DSM images, the block minimum filter was applied with a grid
size of 300m. The second stage of building height extraction is to se-
parate buildings from other objects by assigning the nDSM to each
building footprint using the building information acquired from the
Maps Static API. In this study, BH refers to the average building height
of an individual building. The estimated building heights within the
sites of the study area are displayed in Fig. 5.

2.3.3. Derivation of urban morphological parameters
The building coverage ratio (BCR) is the ratio of the building area to

the total land lot size. The BCR has a strong influence on the local
thermal environment (Zhan, Meng, & Xiao, 2015) and has an impact on
local wind velocity ratios (Kubota, Miura, Tominaga, & Mochida, 2008;
Ng et al., 2011). The results show that the higher the gross BCR is, the
lower the observable wind velocity ratio will be. The BCR is calculated
as follows:

=
∑ =

C
S

BCR i
N

i

L

1

(2)

where Ci is the area of building i on the plan area and SL is the size of
the plan area.

The building volume density (BVD) represents the building density
over the land lot size. The BVD also influences the local thermal en-
vironment (Chen et al., 2012). The BVD is calculated as the total vo-
lume of buildings divided by the land lot size:

Fig. 2. A chart of the workflow for the 3D urban morphology extraction process
proposed in this study.
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=
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where Ci is the area of building i on the land lot, hi is the height of
building i and SL is the size of the plan area.

The sky view factor is defined as “the ratio of the amount of the sky
‘seen’ from a given point on a surface to that potentially available (i.e.,
the proportion of the sky hemisphere subtended by a horizontal sur-
face)” (Oke, 1987, 404). The SVF can be used to quantify the ratio of
the diffuse irradiance at a given point to that of an unobstructed hor-
izontal surface. The SVF ranges between one (no influence of the

adjacent terrain) and zero (no sky view and maximal influence of the
adjacent terrain). The SVF is an important indicator for urban heat is-
lands (Chen et al., 2012; Gál, Lindberg, & Unger, 2009; Scarano &
Mancini, 2017). The SVF can be calculated based on DSM data by
adding building heights to a DEM at a very fine scale (Dozier & Frew,
1990). In this study, the DSM newly generated from the retrieved
building heights and the DEM with a 2-m resolution were used to cal-
culate the SVF with the following expression derived from previous
work (Böhner & Antonić, 2009; Scarano & Sobrino, 2015):

∫= + − − −SVF
π

β φ β ϕ α φ φ φ dϕ1
2

[ cos cos sin cos ( )(90 sin cos )]
π

0

2 2

(4)

where β and α are the surface slope angle and surface aspect, respec-
tively, calculated from the DSM, φ is the horizon angle and ϕ is the
azimuth direction.

The frontal area density (FAD) refers to a building’s frontal areas
that face the wind over a site’s area. The FAD is an important parameter
for describing the surface roughness and for detecting the air paths in
urban areas, which can provide a basic understanding of urban venti-
lation at the pedestrian level. Ng et al. (2011) conducted a study on
detecting the wind environment in the Kowloon Peninsula of Hong
Kong based on the FAD and found that the wind velocity ratio is more
dependent on the urban morphology characteristics at the podium layer
(0−15m) than at the canopy layer (0−60m); a 10 % increase in the
FAD can result in a 2.5 % decrease in the wind velocity ratio at the
podium layer. The FAD in one wind direction is calculated as:

=
∑

FAD θ
A θ
S

( )
( )i F

(5)

where A θ( )F represents the frontal area of building i in the wind di-
rection θ and S represents the size of the uniform grid, which is chosen
as 100m, 250m and 500m in this study.

2.4. Validation of the results

To assess the accuracy of the extracted urban morphology, the es-
timated urban morphological parameters were compared with the

Fig. 3. Building footprints from the Maps Static API (map center: 22.33,
114.16, zoom=17).

Fig. 4. Extraction of building footprints for site 5, shown above as an example. For all the other sites, please see Figure S1 in the supplementary materials.
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actual parameters at resolutions of 100m, 250m and 500m. First, a
linear regression model was established between the estimated and
actual urban morphological parameters. The R-squared value was used
to assess the quality of the estimated results, where a higher R-squared
value indicates a better prediction result. The calculation of R is dis-
played in the following equation:

=
∑ − ∑ ∑

∑ − ∑ × ∑ − ∑

= = =

= = = =

R
n x y x y

n x x n y y

( )( )

( ) ( ) ( ) ( )

i
n

i i i
n

i i
n

i

i
n

i i
n

i i
n

i i
n

i

1 1 1

1
2

1
2

1
2

1
2

(6)

where n is the total number of observations, y is the estimated mor-
phological parameter, and x is the actual morphological parameter.
Second, the root mean square error (RMSE) was calculated to examine
the errors of the predicted results. The RMSE is a quadratic scoring rule
that also measures the average magnitude of the error; it is the square
root of the average of the squared differences between the predicted
values and the actual observations. The lower the RMSE is, the better
the estimates are.

∑= −
=

RMSE
n

y x1 ( )
i

n

i i
1

2

(7)

3. Results

Based on the retrieved urban morphology information, a set of

urban morphological parameters was further calculated and aggregated
at resolutions of 100m, 250m and 500m to test the accuracy and
possible applications of the results at different scales. Fig. 6 shows the
actual and estimated urban morphological parameters at grid resolu-
tions of 100m, 250m and 500m.

4. Discussion

4.1. Analyzing the results of extracting building morphological parameters

4.1.1. Building coverage ratio
The validation of the results based on the 100m grid shows good

consistency between the actual and estimated BCR values with an
R2=0.736 and an RMSE of less than 9 %. As shown in the regression
plot of the BCR at a 100m grid size, a slight but systematic under-
estimation can be clearly observed. This underestimation not only ap-
pears at specific intervals but can be seen along almost the entire range
of the data. With an increase in the grid size, the level of under-
estimation decreases. The relationship between the actual and esti-
mated BCR values further increases to R2=0.824 at a grid size of
250m and R2=0.892 at a grid size of 500m. These results indicate
that the estimated BCR using the method proposed herein can fulfill the
requirements of input data for meteorological research and weather
forecasting models, such as the Weather Research and Forecasting
(WRF) model. Moreover, the estimation results at 250m could be

Fig. 5. The estimated building heights in (a) Site 3, (b) Site 4, (c) Site 5, and (d) Site 11.
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Fig. 6. The actual and estimated urban morphological parameters at grid resolutions of 100m, 250m and 500m.
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adopted for research at a fine spatial scale because these results already
provide a reasonably accurate depiction of single urban neighborhoods
and small street blocks, potentially providing a valuable input dataset
for reducing the spatial uncertainties in environmental health risk as-
sessments.

4.1.2. Building height
The estimation of the building height has a reasonable relationship

with R2 values of 0.630, 0.690, and 0.706 at grid sizes of 100m, 250m
and 500m, respectively. Similar to the estimation of the BCR, a general
slight underestimation is observed. In contrast to the BCR estimation,
however, the estimation performance of the BH does not increase
considerably as the grid size increases. For example, the performance
increases only slightly, by approximately 11 %, when the grid size is
enlarged by a factor of five. Moreover, the regression analysis also in-
dicates that the regression relationship between the actual and esti-
mated BH values varies among different urban forms. As indicated in
the regression plot of the BH at a grid size of 100m, the Hung Hom site
in the Kowloon Peninsula has a significant difference (the different
relationship is shown as the separately plotted red regression line).
Moreover, the estimation results for areas with generally low building
heights are unsatisfying, which may limit the application of the pro-
posed method in urban forms with a low-rise building environment. As
indicated by these findings from the BH estimation, nonlinear fitting
models are needed for further investigation and might need to be in-
corporated into the algorithm for improving the proposed method.

4.1.3. Building volume density
A slight overall underestimation was also observed in the estimation

of the BVD at all grid sizes. This might be a result of the observed
underestimation in both the BCR and the BH. However, there are no
particular patterns among the different quantiles of the BVD. The

outliers are mostly randomly distributed along both sides of the re-
gression line. Similar to the BCR estimation results, there is consistency
between the actual and estimated values since the R2 values increase
from 0.599 to 0.808 as the grid size increases. The proposed method
provides a usable estimation of the BVD at a 500m spatial resolution,
which is potentially applicable as an input to regional meteorological
and weather forecasting models. However, the overall underestimation
mentioned above will need to be calibrated based on site survey data.

4.1.4. Sky view factor
For the relationship between the SVF calculated based on actual

building data and that based on estimated building data, the R2 ranges
from 0.745 to 0.781 for the three different grid sizes. Similar to the BH,
the estimation performance of the SVF does not increase considerably
as the grid size increases. The overall estimation performance of the
SVF remains stable across different grid sizes and is therefore not sen-
sitive to the resolution. No obvious underestimation or overestimation
was identified. The above findings indicate that the building data
generated by using the Google Maps API and the AW3D30 dataset
provide a reasonably good estimation of the SVF (Fig. 7). Considering
that the results remain stable at varying spatial resolutions (ranging
from 100m to 500m), the SVF estimation results are applicable to the
investigation of city-scale outdoor thermal comfort; the estimated SVF
could also be used as a reference for the spatial investigation of city-
scale urban climate and city energy exchanges.

4.1.5. Frontal area density
Similar to the BVD, a slight overall underestimation was observed in

the estimation of the FAD at all different grid sizes, which might be due
to the observed underestimation in both the BCR and the BH. However,
there are no particular patterns among the different quantiles of the
FAD. The data points are mostly randomly distributed along both sides

Fig. 7. (a) The actual sky view factor of Site 3. (b) The estimated sky view factor of Site 3. (c) The actual sky view factor of Site 5. (d) The estimated sky view factor of
Site 5.
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of the regression line. Different from the BH estimation results, the
regression analysis of the estimated FAD indicates that the regression
relationship between the actual and estimated BH values does not vary
among different urban forms. Moreover, the estimation performance of
the FAD slightly increases as the grid size increases. The R2 values reach
0.514 and 0.618 at grid sizes of 100m and 250m, respectively, and a
usable estimation performance of R2=0.677 is achieved at a grid size
of 500m. These validation results indicate that the FAD estimation
results acquired at a spatial resolution of 500m by using the method
proposed in the present study have the potential to be further calibrated
with a site survey and subsequently adopted as input data for meteor-
ological research and weather forecasting models, such as the WRF
model. By investigating the geolocation of the outliers in the regression,
it can be found that a low actual FAD in reality but a high estimated
FAD in the extracted building dataset is due to an overestimation cor-
responding to the low-rise, sparsely built village clusters on the hill-
slope. To resolve this issue, the method of handling the AW3D30 da-
taset should be fine-tuned to correct for the estimated building heights
of low-rise buildings on slopes or at relatively high elevations. A high
actual FAD in reality corresponding to a low estimated FAD in the ex-
tracted building dataset is also observed, which is due to the under-
estimation caused by unidentified skyscraper towers atop the large
building podiums in the footprint data extracted using the Google Maps
API. These under/overestimations are not considered to be critical is-
sues since the above situations are due to unique urban morphological
characteristics, which do not occur frequently in most cities.

4.2. Limitations and future research

As shown in the validation of these results, although the newly
developed 3D urban morphology extraction method performs reason-
ably well in estimating most urban morphological parameters in the
majority of urban forms, slight overestimations or underestimations
have been observed in the test results when applying this method in
Hong Kong. By identifying the geolocations of the overestimated or
underestimated areas, it has been found that many of these cases are
due to the highly complex urban form of Hong Kong, which should not
be as critical an issue in other cities throughout the world. More spe-
cifically, the elevation information within the AW3D30 dataset over
Hong Kong tends to have a lower accuracy than the information over
other cities, as it is more challenging to extract building heights from
the extremely high-density and unique urban physical environment of
Hong Kong (Xu et al., 2017b). All the above findings indicate that fu-
ture research should focus on fine-tuning the method for handling the
AW3D30 dataset to further improve the estimation of the building
heights in some particular scenarios (i.e., involving low-rise buildings
on sloped land or at relatively high elevations or involving skyscraper
towers combined with large building podiums). Future research should
also focus on testing the proposed method in other cities with varying
urban morphological characteristics.

To further improve the robustness of the results in different urban
scenarios all over the world, we would like to recommend that the
potential users of this method conduct on-site building surveys in their
own cities (or acquire building survey data from local authorities)
based on a partial sampling scheme. These building survey data could
be used as the ground truth for calibrating and fine-tuning the results
for their particular urban forms.

Roofs are another important component of urban morphology in an
urban environment. The geometry of a roof can be detected using the
Maps Static API. However, variations in the roof height cannot be fully
represented due to the coarse spatial resolution of the AW3D30 dataset.
Thus, this study focused only on the footprints and heights of buildings.

5. Conclusions

This study developed an easy and highly efficient method for

extracting 3D urban morphology information by using open-source
data. Our newly developed method provides researchers with a possible
way to collect 3D urban and building morphology information since all
raw data are freely available and accessible to the public. The devel-
oped method consists of a two-step procedure: building footprints are
extracted from styled maps using the Maps Static API, and building
heights are extracted from open-source DSM data, i.e., the AW3D30
dataset. The proposed method was applied in Hong Kong, a city with a
varying and complex urban morphology. The 3D urban morphology in
Hong Kong was extracted using the developed approach, and the urban
morphological parameters, including the building height, building
coverage ratio, building volume density, sky view factor and frontal
area density, were calculated. As the proposed approach is generic and
uses open-source data, given the reliability of the results, this study
demonstrates that the developed method could be adopted and applied
to any other city or region on Earth. The urban morphological para-
meters estimated based on the newly compiled 3D urban morphology
data were validated by a comparison with the actual parameters in
different urban landscapes at various resolutions of 100m, 250m and
500m to explore the potential usage of the developed methodology.
The results show a reasonably good and useable accuracy and a wide
applicability of the newly proposed method. In particular, a higher
accuracy was identified in areas with a less complex urban form, and
the accuracy increased with the spatial resolution of the urban mor-
phological parameters. The high accuracy of the urban morphological
parameters extracted based on the grid with a 500m spatial resolution
indicates that the 3D urban morphological information detected using
the proposed method is readily applicable to serve as input data for
mesoscale climate and environment modeling simulations, such as WRF
simulations. The presented method and the retrieved variables can also
be used as environmental variables in environmental exposure in-
vestigations, public health risk assessments, and urban carbon emis-
sions mapping. Therefore, this 3D urban morphology extraction method
can contribute to sustainable urban development in general and prac-
tical applications in the implementation of town planning exercises and
urban development decision-making.
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